If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-90=0
a = 4; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·4·(-90)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*4}=\frac{0-12\sqrt{10}}{8} =-\frac{12\sqrt{10}}{8} =-\frac{3\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*4}=\frac{0+12\sqrt{10}}{8} =\frac{12\sqrt{10}}{8} =\frac{3\sqrt{10}}{2} $
| 6j-20=-8 | | 2x+30=180-65 | | -18=10x=9x+20 | | 12t+3=10t+1 | | 7y/12-5=4-4y/3 | | (3x+7)^2=36 | | 3y+1/4=13/4 | | 265-48t=553 | | -42=-7(1+r) | | x/7=3.4 | | 3x-14=11-2x | | b/2+1/9=11 | | 19.76+x=25 | | 6r+3=21r+8 | | --7(7-4x)=9 | | 10-q=16q+7 | | 3+x+8-x-4+x=22 | | (1/x)+(1/(x+1))=2 | | -9(z-1)=-8z-9 | | -2x-4(-3x+2)=10 | | (4f)^2⋅f=432 | | 13n+14=17 | | (4f)2⋅f=432 | | 3x-5/3=7x+5/5 | | 3t-10=4 | | 3n-2=4n | | 7+29x=42+22 | | 7/2x+1/2x=3x+2/3+5/2x | | 1/x+1/(x+1)=2 | | 1/X=1/15x+1/12x+1/3x2 | | (8x+36)^(1/2)+6=x | | 8(2x-3)=3(4x-8) |